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Summary 

Chaos is a term assigned to a class of motions in deterministic systems whose 

time history has a sensitive dependence on initial conditions. Such phenomenon has 

previously been shown to exhibit in ocean acoustics' ray tracing, and thus called "ray 

chaos" by the ocean acoustics community. Since 1995, we have made further 

investigations on the ray chaos, as a basic research project sponsored by the Office of 

Naval Research (Grant No. N00014-95-10443). The results of these investigations are 

presented in this report. 

Two topics are addressed. The first is the chaos in three-dimensional (3-D) ray 

tracing. All of the previous studies have a common shortcoming: They all used two- 

dimensional (2-D) ray equations. The 2-D equations are not valid for long-range 

transmissions, while chaos is well known as a long-range problem. This means that the 

2-D equations may lose validity before chaos is manifest. To overcome this shortcoming, 

we use the 3-D equations. We also use measured sound speed data for our study to be 

more realistic. First, we study the chaos in Heard-to-Ascension (HA) propagation, and 

then California-to-Hawaii (CH) propagation. Chaos appeared in both cases. Loss of 

predictability occurred in HA case. However, CH problem was predicted with high 

accuracy even in the presence of chaos. Comparison between the HA and the CH case 

leads to a hypothesis on overcoming ray chaos. The signature of chaos in the received 

signals at Ascension Island is discussed. 



The second topic we address in this report is the chaos in double-channel 

propagation. First we use the 2-D equations and a double-channel model to study the 

effects of internal waves on chaos. Then we use the 3-D ray equations and measured 

sound speed data to conduct a further investigation. Numerical results show that chaos in 

a double-channel is likely to be induced by internal waves. In addition, much larger 

chaoticity was observed when the measured sound speed data were used. This suggests 

that in a real ocean environment the double-channel chaos might have larger chaoticity 

than that in our model experiments. 

in 
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I.       INTRODUCTION 

A.       Scientific background 

Chaos is a term assigned to a class of motions in deterministic systems whose 

time history has a sensitive dependence on initial conditions1. In ocean acoustics, Palmer 

et al. have shown that acoustic ray paths in a weakly range-dependent deterministic 

ocean model exhibit such chaotic behavior. This implies that even if the sound speed 

structure were known with infinite precision, a limitation is imposed on one's ability to 

make deterministic predictions using ray theory, because small errors in initial conditions 

(source depth and launch angle) grow exponentially in range. The Palmer et al.'s 

pioneering work created a new field of ocean acoustics: Acoustic ray chaos. Further 

studies in this field have been conducted by Abdullaev and Zaslavskii3, Tappert et al.4, 

Brown et al.5-6, Smith et al.7'8, Yan9, Collins and Kuperman10, and Tappert and Tang11. 

These previous studies have provided some new insights. However, all of the 

previous studies have a common shortcoming: They all have used two-dimensional (2-D) 

ray equations. The 2-D equations apply only to short range transmissions, while chaos is 

well known as a long-range problem. This implies that the ray equations may lose 

validity before chaos is manifest. Hence, some conclusions of the previous studies might 

be controversy. To conduct a more realistic investigation, we started a research project 

sponsored by The Office of Naval Research (Grant No. N00014-95-10443). The project 

started on February 1, 1995, and ended on January 30, 1997. The results of this 

investigation are presented in this report. 



B.       About this report 

Two studies are made in this report. The first is the study of ray chaos using a 

newly developed three-dimensional (3-D) ray equations12. As mentioned above, all of the 

previous studies have a common shortcoming: The ray equations used in the studies are 

two-dimensional (2-D) equations. These equations are valid for at most 100 km range, 

but they were integrated to thousands of kilometers (far beyond their range limitation) to 

construct Poincare sections and estimate Lyapunov exponents. This leads to some 

unreasonable result. For example, a predictability horizon of 1000 to 2000 km has been 

estimated in reference 8 using Lyapunov exponents, but the ray equations used in that 

work are only valid for about 100 km. This suggests that the predictability of ray 

acoustics is determined by ray equations, rather than the chaos. Hence, that predictability 

horizon is to be questioned. To overcome the shortcoming of the previous studies, we 

use the 3-D ray equations in this project, as well as measured sound speed data rather than 

models. These two improvements allow our study to be more realistic. 

The second topic we address in this report is the chaos in double-channel 

propagation. In the previous work, Yan9, one of us, has discovered that in an oceanic 

double-channel, sound propagation is more likely to exhibit chaotic behavior. This 

phenomenon is further investigated in this project, by using a measured sound speed data 

base and taking into account the earth curvature in ray tracing. 



The remainder of this report is organized as follows. In section n, we study the 

ray chaos using the 3-D ray equations and measured sound speed data. Two propagation 

problems are studied. The first is the Heard Island to Ascension Island sound 

transmission, which is a part of the Heard Island Feasibility Test (HIFT) conducted in 

January 1991. The second is the California to Hawaii sound transmission, which is a part 

of the project of Acoustic Thermometry of Ocean Climate (ATOC). The first problem 

(with propagation range of 9200 km) is very difficult to predict due to chaos. The second 

problem (with propagation range of 3300 km), however, is predicted with very high 

precision even in the presence of chaos. Comparison between the two cases leads to a 

hypothesis in overcoming ray chaos. Predictability of ray acoustics is also discussed in 

this section. In section HJ, we study the chaos of underwater sound in double-channel 

propagation. First, we use two-dimensional ray equations and a double-channel model to 

perform numerical simulations. Further investigations are then carried out by using three- 

dimensional ray equations and measured sound speed data. Chaos is shown to exhibit in 

double-channel propagation. Section IV deals with the discussions on the signature of 

chaos in acoustic measurements. A concluding remark is presented in Section V. There 

are also three appendixes, i.e., Sections VI, VII, and VJH, concerning, respectively, the 

derivation of the range equation used in 3-D ray tracing, more numerical results, and 

finally, an article entitled "Lyapunov exponent does not quantify predictability." This 

article shows that Lyapunov exponent cannot be used to quantify the predictability 

horizon while it has been used by the ocean acoustics community. 



II.      CHAOS IN 3-D RAY TRACING 

In the previous studies,2t0 H used are 2-D ray equations, which are valid only for 

short range transmissions. Since chaos is well known as a long-range problem, why don't 

we use long-range ray equations to study the ray chaos? Currently, there are two sets of 

long-range ray equations we can use. The first is Munk et al.'s13 horizontal ray equations, 

constructing ray path on the latitude-longitude plane. The second is our new 3-D ray 

equations12 that construct a ray path in the dimensions of latitude, longitude and ocean 

depth. Both take into account the curvature of an ellipsoid earth and 3-D refraction, so 

that they do not have range limitation. We have already applied the Munk et al.'s 

equations to the study of chaos in horizontal ray tracing, and presented the results in a 

previous paper.14 In this section, we present the results of chaos in 3-D ray tracing. 

Two propagation problems are studied here. The first is the Heard Island to 

Ascension Island sound propagation, and the second is the California to Hawaii 

propagation. The first problem is very difficult to predict due to chaos. However, the 

second problem is predicted with high precision in the presence of chaos. Predictability 

of ray acoustics is discussed. 



A.       Heard Island to Ascension Island sound propagation 

1.       Problem statement 

During January 1991, the Heard Island Feasibility Test (HIFT) was carried out to 

determine the feasibility of acoustically measuring the rate of ocean warming. 

Underwater acoustic signals were transmitted from a ship in the southern Indian Ocean 

and monitored at listening stations throughout the world15'16. This experiment provides 

us with a good opportunity to study the ray chaos, considering that the propagation paths 

in this case are long enough for the ray chaos to exhibit. In this section, we perform 3-D 

ray tracing for the sound propagation from Heard Island to Ascension Island to 

investigate if ray chaos exists in this case. 

For our investigation to be as realistic as possible, we use the 3-D ray equations 12 

that do not have range limitation. In addition, we use a measured sound speed data base 

provided by the National Oceanographic Data Center (NODC). The data are for the 

seasonal period, December through March. This seasonal period covers that during 

which HIFT was performed. 

Ascension Island (7°57'S, 14°24'W) is located in the Atlantic Ocean. From the 

source ship (53°33'S, 74°30'E) to Ascension Island, the distance along the geodesic is 

approximately 9200 km17, about one quarter of the distance around the earth. Table 1 

shows the parameters of the source and the receiver used in this calculation. The 



receiver's parameters in Table 1 are those of the hydrophone 23 that is located south of 

the Ascension Island 17. 

Table 1    Parameters of source and receiver 

Source Receiver 

Latitude (Deg) 53°22'S 8°4.2'S 

Longitude (Deg) 74°30'E 14°25.2'W 

Depth (km) 0.175 0.832 

2.        Methods 

a)       New 3-D ray equations 

As mentioned in the first section, a common shortcoming of previous studies is 

the use of 2-D ray equations that apply only to short range transmissions while chaos is a 

long-range problem. To overcome this shortcoming, we use the new 3-D ray equations 

that do not have range limitation. The new 3-D ray equations we u have previously 

derived are 
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are the radius of curvature and the radius of curvature in prime vertical, respectively18. 

In Eqs. (1) through (7), f\s geographic latitude; A is longitude, east of Greenwich being 

positive; r is ocean depth, downward positive; a is azimuth, measured clockwise from 

north; 0 is grazing angle; a is the semimajor radius of the reference ellipsoid; and e is the 

eccentricity of the ellipsoid. These ray equations account for the curvature of an ellipsoid 

earth and 3-D refraction, and thus, should not have range limitation. Apart from these ray 



equations we have previously derived, we also use the following equations to compute 

travel time 

ds~ C 

and the propagation range 

(8) 

dR 

as 

f   .. \2    r   .. \2 
 cosa    +  sinorl (9) 
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The derivation of equation (9) is presented in Appendix 1. 

b)       Numerical calculations 

Before ray tracing, we sort the NODC sound speed data sets into numerical orders 

of latitude and longitude, respectively. Meanwhile, we index each data set. The straight 

insertion method19 is used for sorting the data. The index of a data set is to be used for 

finding a particular sound speed data set during the 3-D sound speed interpolation as 

described in the following paragraph. 

We integrate the ray equations (1) through (5) using the fourth-order Runger- 

Kutta method with adaptive step size control.19 The calculation accuracy is controlled by 

specifying a maximum fractional error (10-6) in any single integration step. For a given 



location (<fo,Ao,ro), the sound speed is estimated through the interpolation of the pre- 

sorted NODC 3-D sound speed data base. In the 3-D interpolation, we first find the grid 

square in which the point (^» falls. Then we find the sound speed data sets on the grid 

square through the index we give to each data set during the sorting process described in 

the previous paragraph. We estimate the sound speed at depth ro for the grid points using 

Cubic Spline method.19 Finally we obtain the sound speed at (fo,Ao,ro) by performing 

Bilinear Interpolation19 on the <j)X,-plane. 

The following method is used to find eigenrays - rays connecting the source and 

the receiver. First, we search for the launch azimuth with which the ray passes within a 

given error tolerance for both the latitude and the longitude of the receiver. Successive 

Shooting method20 is used for the searching process. Then we adjust launch grazing 

angle and again the launch azimuth through trial-and-error to continue searching. A ray is 

determined as an eigenray, if it passes within given error tolerances of the receiver's 

coordinates (<Mr,rr). This is a very difficult task due to ray chaos, as will be described in 

Section A3. 

c)       Diagnosis of chaos 

Two methods are used to diagnose chaos. The first is the Lyapunov exponent 

method. The rth one-dimensional Lyapunov exponent is defined as 21 

10 



4=lim;log2^W, 
»-»«1        ptiP) 

(10) 

where p is the length of the ellipsoidal principle axis, and h are ordered from the largest 

to the smallest. Lyapunov exponents are the average exponential rates of divergence or 

convergence of nearby orbits in the phase space. Any system containing at least one 

positive Lyapunov exponent is defined to be chaotic. To estimate the Lyapunov 

exponents, Wolf et al.'s21 method is used, and their published FORTRAN code is 

adapted for this calculation. 

For calculating pt(t), we use the following variational equations: 
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These variational equations are derived from ray equations (1) through (5). They are 

numerically integrated along with the integration of the ray equations to estimate 

Lyapunov exponents. 

The second method we use to identify chaos is the Power Spectrum Method. We 

compute the power spectra for each ray path, by using the Fast Fourier Transformation 

(FFT)19 to analyze vertical path data. A chaotic ray path is characterized by broadband, 

13 



noisy spectra. The Power Spectra are used together with the Lyapunov exponents to give 

a conclusive assessment as to whether a ray is chaotic. 

3.       Numerical results 

a)       Extremely sensitive dependence on initial 
conditions 

Fig. 1 shows two vertical ray paths between Heard Island and Ascension Island. 

The upper is an eigenray, which is launched with an azimuth of 266.7258936017752°, 

and a grazing angle of 0.5000000000000000°; and the lower is the vertical ray path 

launched with the same azimuth, but a slightly different grazing angle 

(0.5000000050000000°). By comparing the two ray paths, we can see clearly that a very 

small difference (0.00000005°) between the launch grazing angles caused substantial 

change in ray path. This phenomenon ~ extremely sensitive dependence on initial 

conditions — is just a characteristic of chaos. 

The small perturbation to the launch grazing angle not only caused the substantial 

change in the ray path, but also dramatically changed the ray parameters. This can be 

seen in Table 2. From this Table we can see that when the small perturbation is imposed 

to the launch grazing angle, the ray constructed is no longer an eigenray. At the 

receiver's longitude, the difference in ending longitude is almost 1 degree, and the 

propagation range is reduced to 9155 km. The latter caused substantial change in travel 

time. 

14 



Table 2 Comparison of ray parameters (The ending latitude is -8.069997° in both 

cases. The launch angles are given in Fig. 1.) 

Parameters at the receiver     Eigenray 1 The perturbed ray Differences 

Longitude (Deg) 

Depth (km) 

Travel time (Sec) 

Range (km) 

-14.420752040715 -13.4235716603278 -0.9972 

0.83525 0.57177 0.26348 

6258.132 6211.618 46.514 

9222.607 9155.850 66.757 

b)       Positive Lyapunov exponents 

We have just shown that the 3-D ray paths we have constructed are extremely 

sensitive to initial conditions. This phenomenon is the characteristics of chaos. Fig. 2 

shows the Lyapunov exponents of the ray in Fig. 1. We can see clearly from Fig. 2 that 

this ray has positive Lyapunov exponents, suggesting chaos. This is consistent with its 

behavior of sensitive dependence on initial conditions as shown in Fig. 1. Figure 2 is 

only a typical result. In fact, we have estimated Lyapunov exponents for all the rays 

computed in this project. As a matter of fact, all of the rays have positive Lyapunov 

exponents, indicating chaos. 

15 



c)       Loss of predictability 

The presence of the chaos caused the loss of predictability. This can be seen in 

Table 3 that gives the last eleven steps of the iteration in shooting the receiver's longitude 

(-14.42°). In this calculation, for a given launch grazing angle (-3.0°), we successively 

change the launch azimuth, using bisection method, to drive the ray to the receiver's 

longitude. We can see clearly from this Table that at the 44-th step, the launch azimuth 

had already been specified with 16-digit accuracy ~ the maximum accuracy in 

FORTRAN'S double precision. However, we still did not arrive at the receiver's 

longitude. This implies that a limitation due to the ray chaos is imposed on our ability to 

make predictions. In other words, the loss of predictability occurred in this case. 

Table 3 Loss of predictability 

Iteration Launch Azimuth (Degree) Ending 
Number 

35 266.6249999999418 -14.57 
36 266.6249999999709 -14.63 
37 266.6249999999854 -14.65 
38 266.6249999999927 -14.60 
39 266.6249999999964 -14.61 
40 266.6249999999982 -14.55 
41 266.6249999999991 -14.64 
42 266.6249999999995 -14.58 
43 266.6249999999998 -14.60 
44 266.6249999999999 -14.55 
45 266.6249999999999 -14.05 

; Longitude Xend | A.end-taeceivei| 

(Degree) (Degree) 

0.15 
0.21 
0.23 
0.18 
0.19 
0.13 
0.22 
0.16 
0.18 
0.13 
0.37 

Mentioned above are only some typical results. In fact, all of the rays computed 

are chaotic according to their positive Lyapunov exponents. Due to the ray chaos, our 

16 



ability to predict is very limited in this case. Until now we have not found an eigenray 

that satisfies the given accuracy: ±0.000005° for the receiver's latitude and longitude, and 

±0.0005 km for the receiver's depth. The best one and also the only one we have found 

passes within 0.000005° of the receiver's latitude, 0.0008° of the receiver's longitude, 

and 0.0033 km of the receiver's depth. Its travel time (6258.132 sec) seems in good 

agreement with the measurements (1 hr, 44 min, 17 sec.,) but we got this result by 

chance, rather than by any conventional algorithms. This is illustrated in Table 4. The 

data in this table are taken from a shooting process, with a launch grazing angle of 0.5° 

and launch azimuths between 266° and 269°. The error tolerances we set for this 

calculation were within 0.000005° of both the receiver's latitude and the receiver's 

longitude, and within 0.0005 km of the receiver's depth. We did not get any ray that 

satisfies this criterion. Instead, we list those which are closest to the receiver in Table 4. 

We can see that the ray computed at the 45-th step of shooting is not better than that at the 

28-th step, since the former has larger errors at the receiver. Obviously, continuing 

shooting cannot improve the accuracy of prediction. Therefore, we lose predictability in 

this case due to chaos. 

It is interesting to discuss how accurate we can predict in this case. Table 5 lists 

those rays that are closest to the receiver during a shooting process. In the calculations, 

the ending longitude is obtained with an error of 0.000005 degree. We wish to get the 

ending longitude with the same accuracy, but we could not. Instead, we list 
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Table 4 Some rays in a shooting process 

No. of Travel Range Ending Ending Error of Error of 

shooting time (sec.) (km) Longitude Depth Longitude Depth at 

(Deg) (km) at receiver receiver 

15 6257.977 9222.457 -14.4186 0.7903 0.0014 0.042 

20 6258.247 9222.778 -14.4233 0.8953 0.0033 0.0633 

28 6258.132 9222.607 -14.4208 0.8353 0.0008 0.0033 

45 6258.206 9222.845 014.4243 0.8849 0.0043 0.0329 

Table 5 Errors at the receiver: A typical result (launch azimuth is successfully 

changed using bisection method, and launch grazing angle is fixed at 0.5°) 

Travel time, Sec Range, km Longitude, Deg. Depth, km 

Ray 1 6257.977 9222.5 -14.4186 0.7903 

Ray 2 6258.247 9222.8 -14.4233 0.8953 

Ray 3 6258.132 9222.6 -14.4208 0.8353 

Ray 4 6258.206 9222.8 -14.4243 0.8849 

Prediction 6258 9223 -14.42 1 
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those results that satisfies ±0.005° error tolerance for the receiver's longitude. From this 

Table, we can see that at the receiver's longitude (-8.07000°), 

• the receiver's longitude we got has an error of 0.005°, corresponding to about 500 m 

error in the longitude direction; 

• the travel time we got can be accurate to seconds (in this case, 6258 sec); 

• the range predicted can be accurate to ten meters (in this case, 9220 km); and 

• The receiver's depth we got may only be accurate to kilometers. 

Considering that the propagation range in this case is about 9220 km, the accuracy of the 

travel time, the range, and the receiver's longitude appears to be good. However, the 

accuracy of the receiver's depth, which can only be accurate to kilometers, cannot be 

accepted for a 3-D ray tracing. In addition, the accuracy of travel time may not meet the 

needs of ocean acoustic tomography. Table 5 lists a typical result. In our calculation, the 

accuracy we predicted varies with the launch grazing angle. More ray data are given in 

Appendix 2. 
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4.       Conclusions 

We have shown that in the case of the Heard-to-Ascension sound propagation, 

chaos occurred in ray tracing. Due to the chaos, our ability to make deterministic 

prediction is very limited in this case. Consequently, we have not gotten any eigenray 

that satisfies the given error tolerances at the receiver. The best one and also the only one 

we have got passed with 0.000005° of the receiver's latitude, 0.0008° of the receiver's 

longitude, and 0.033 km of the receiver's depth. Its travel time (6258.132 seconds) seems 

in good agreement with the measurements (1 hr, 44 min, 17 sec.,) but we got this result 

by chance rather than using any conventional algorithms. 

B.       California to Hawaii sound propagation 

We have just shown that in the case of the Heard-to-Ascension sound 

propagation, predictability is very limited due to chaos. Now we present a very different 

result: In the presence of chaos, we predict with very high precision for a 3300 km sound 

propagation problem - the California to Hawaii sound propagation. 

1.       Geophysical settings 

As part of the Acoustic Thermometry of Ocean Climate (ATOC) program, an 

Acoustic Engineering Test (AET) was conducted during November 1994. Broad band 

acoustic data were obtained at about 3,300 km (from California to Hawaii) and 10,000 
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km (from California to New Zealand). Here we study the California-Hawaii sound 

propagation. The broad band ATOC source was located at about 300 nm of San Diego, 

California, near Jasper Seamount (31.03416667°N, 123.5903333°W,) and the receiver 

was placed at 20.65066666°N and -154.0773333°W, near Hawaii.22 The source location 

and the receiver's location are given in Table 6. 

Table 6 Parameters of source and receiver for California-to-Hawaii ray tracing 

Source Receiver 

Latitude (Degree) 31.03416667° 20.65066666° 

Longitude (Degree) -123.5903333° -154.0773333° 

Depth (km) 0.650 1.2696 

2.       Numerical ray tracing 

We still use the ray equations (1) through (5) to construct ray paths. The 

numerical methods and the computer codes are the same as those that used for the Heard- 

to-Ascension sound propagation described in Section A2. Different from the Heard-to- 

Ascension ray tracing, however, is that we now use Levitus sound speed data base, rather 

than the NODC sound speed data. The Levitus sound speed data base is provided by the 

ATOC group at the Scripps Institution of Oceanography, University of California at San 

Diego. Compared with the NODC data, the Levitus data are smoother in horizontal 

direction. 
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Before searching for eigenrays, we determine the maximum fractional error for 

the Runge-Kutta method. This is done by specifying different values of the maximum 

fractional error in any single integration step. The results are presented in Table 7. 

Table 7 Dependence of ray parameters on the maximum fractional error (Eps) 

specified in Runge-Kutta code.. 

Eps       Ending (j) Ending X 

(Degree) (Degree) 

Ending r       Travel time      Range (km) 

(km) (sec) 

1D-4     20.344388        -154.077338 0.5782 2206.673 3267.881 

1D-5     20.344383        -154.077338        0.5646 2206.673 3267.881 

1D-6     20.344387        -154.077338        0.5674 2206.673 3267.881 

1D-7     20.344393        -154.077331 0.5675 2206.673 3267.880 

1D-8     20.344390        -154.077334        0.5675 2206.673 3267.880 

We can see from this table that when it is less than 1D-6, the Eps significantly 

affects the accuracy of the ray parameters. This is due to the rounding-off errors in the 

numerical calculations. To avoid this rounding error effect, we choose Eps=lD-6 in the 
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following calculations. We still use the successive shooting method described in section 

1 to find eigenrays. Table 8 lists nine eigenrays. 

Table 8 Eigenray parameters and Lyapunov exponents 

No. of       Travel           Range           Error of       Error of         Error of Largest 

Eigenray   Time (sec)    (km)             Latitude      Longitude      Depth at Lyapunov 

at receiver   at receiver      receiver Exponents 

1 2196.178 3252.383 0.000005° 0.000003° 0.0003km 0.018 

2 2195.626 3252.283 0.000001° 0.000001° 0.0003km 0.0090 

3 2195.519 3252.383 0.000001° 0.000001° 0.0002km 0.0056 

4 2195.387 3252.383 0.000004° 0.000003° 0.0002km 0.0093 

5 2194.666 3252.383 0.000003° 0.000000° 0.0001km 0.0025 

6 2194.584 3252.383 0.000005° 0.000003° 0.0004km 0.0058 

7 2193.085 3252.383 0.000001° 0.000000° 0.0002km 0.0019 

8 2192.722 3252.382 0.000003° 0.000002° 0.0004km 0.0022 

9 2192.267 3252.383 0.000002° 0.000000° 0.0000km 0.022 
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3.       Chaos and Predictability 

We can see clearly from Table 8 that all of these eigenrays have positive 

Lyapunov exponents, indicating chaos. Figure 3 is the calculation of the Lyapunov 

exponents for these eigenrays. Another evidence to show that these rays are chaotic is 

that all of these rays have broadband noisy power spectra, as are shown in Figure 4. 

These spectra are obtained by using FFT to analyze the vertical ray paths of the eigenrays. 

In each calculation, the vertical ray path is sampled at every 0.3 km range step. 

Positive Lyapunov exponents and broadband noisy power spectra indicate that all 

of the rays listed in Table 8 are chaotic. However, these rays, though chaotic, are all 

predicted with very high accuracy: within 0.000005° of both the receiver's latitude and 

the receiver's longitude, and within 0.0005 km of the receiver's depth (Please see Table 

8). It is worthwhile mentioning that these high accuracy predictions are made even in the 

presence of chaos. 

4.       Conclusions 

In this section, we have studied chaos of underwater sound from California to 

Hawaii. We still use the 3-D ray equations that have been used to study Heard-to- 

Ascension propagation in the previous section. However, we use Levitus sound speed 

data in this case, rather than NODC data. Our numerical results show that all of the rays 

were chaotic, but even in the presence of chaos, we still made predictions with very high 

accuracy. 
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C.       Overcoming ray chaos: A hypothesis 

We have just presented two cases of chaos in ocean acoustics. The first case, 

Heard-to-Ascension propagation (HAP), has a very limited predictability due to chaos. 

However, the second case, California-to-Hawaii propagation (CHP), is predicted with 

very high accuracy in the presence of chaos. We wonder why in CHP case we can predict 

with very high accuracy even in the presence of chaos. 

To answer this question, let us find the differences between the HAP case and the 

CAP case. There are apparently two differences. The first is in propagation range. HAP, 

whose predictability is very limited, has a range of about 9222 km, while CHP has a 

range of only 3258 km. The second difference is in sound speed data. HAP used NODC 

data base that has large fluctuations in the upper ocean (for instance, see Fig. 5). 

However, CHP used Levitus data that is smooth in horizontal (for instance, see Fig. 6). 

The smoothness of the Levitus data might be a reason why in CHP case we predicted with 

a very high precision. Both range and the smoothness of sound speed field can affect 

predictability. 

In practice, we cannot change propagation range, but we can change the 

smoothness of a sound speed data base by using some mathematical methods. From 

comparisons between HAP and CHP cases, we infer that a smoothed sound speed data 

base might help overcome the chaos in ocean acoustics, significantly enhancing our 
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ability in long-range ocean acoustic prediction. To test this hypothesis is one of our 

future efforts. 

D.       On predictability horizon 

Ray chaos means that very long range forecasting using ray theory is impossible, 

but there remains an important question: How far from a source can we predict? Smith 

et a/.8 have given an answer to this question. Using Lyapunov exponent, they defined a 

predictability horizon within which a ray acoustic problem is predictable. They 

performed numerical calculations with an ocean model taking into account mesoscale 

structure, and concluded that the predictability horizon is about 1,000 to 2,000 km.8 

However, Smith et al. used two-dimensional (2-D) ray equations in their research. 

Those equations are valid only for short ranges, at most 100 km, which is much shorter 

than the predictability horizon (1,000 to 2,000 km) they estimated. In other words, the 2- 

D ray equations lose validity before chaos is manifest. Therefore, the 1,000 to 2,000 km 

predictability horizon suggested by Smith et al.8 means that one's ability to make 

deterministic prediction is not limited by the ray chaos, but rather it is restricted by the 

accuracy of the 2-D ray equations. 

Consequently, to enhance our ability to predict using ray acoustics, first of all, we 

need to overcome the range limitation of the ray equations. This was the motivation of 

our previous paper,12 in which we derived a set of three-dimensional (3-D) ray equations. 
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The 3-D equations take into account the curvature of an ellipsoidal earth and 3-D 

refraction, so that they should not have range limitation. 

In this report, we have used these 3-D equations to simulate sound propagation 

with special interest in the study of ray chaos. The propagation range of California-to- 

Hawaii is about 3,300 km, i.e., far beyond the predictability horizon (1000 km to 2000 

km)8 estimated using the 2-D model. However, the predicted results (receiver's locations, 

and travel time) are of very high accuracy (within 0.000005° of both the latitude and the 

longitude of the receiver, and within 0.0005 km of the receiver's depth). It is also 

worthwhile mentioning that all of the ray paths, which are predicted with such a high 

accuracy, are chaotic according to their positive Lyapunov exponents and broadband 

noisy Power Spectra. 

This means that even in the presence of chaos, the ray model (3-D equations with 

Levitus sound speed data base) was still suitable for global ocean acoustic prediction. 

Although the prediction range of this demonstrated example is 3258 km, we may predict 

with satisfactory accuracy for much longer ranges.   This is because that the error 

tolerances we currently specified are very harsh and the 16-digit accuracy of 

FORTRAN'S double precision was not used up to specify the initial conditions.. 

Therefore, the 3-D ray equations (1) through (5) combined with a Levitus sound speed 

data base may become a powerful and more accurate model for global scale ocean 

acoustics ray tracing. 
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However, it is impossible to estimate a predictability horizon according to our 

current knowledge. There are two difficulties. First, the predictability is case sensitive. 

It depends on both the range and the smoothness of a sound speed field, as have been 

discussed in the previous section. Second, we have discovered that Lyapunov exponent, 

which is used by some researchers to quantify predictability, cannot correctly quantify 

predictability. This is explained as follows. 

Using the largest Lyapunov exponent to quantify predictability is first suggested 

by Shaw,   and followed by some researchers, for instance, in references 5,7,8,21. 

However, there is not enough evidence to support this concept. In the published 

references 5,7,8,21, those researchers who believe that Lyapunov exponent quantifies 

predictability did not provide any numerical result to show it in their specific cases. In 

fact, the only evidence we have found is the result of the analog computer experiment 

presented by Shaw.23 We show, in the Appendix 3 of this report, that Lyapunov exponent 

does not quantify predictability. Here we emphasize that it is not correct to use Lyapunov 

exponent to estimate predictability horizon in ocean acoustics, and nor in any other fields. 
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III.     CHAOS IN DOUBLE-CHANNEL PROPAGATION 

We have just studied the chaos in three-dimensional, long-range sound 

propagation in the ocean. Now we further investigate another chaotic behavior in ocean 

acoustics - chaos in double-channel propagation. 

By using Linear Stability Analysis, Yan9 has found that acoustic ray paths in an 

oceanic double-channel exhibit chaotic behavior with larger chaoticity than in a deep 

ocean acoustic channel. This section deals with a more detailed investigation on the 

double-channel chaos, with special interests in the effects of oceanic internal waves. In 

the following, we use the ray equations consistent with parabolic equation and a double- 

channel sound speed model derived from a set of measured data from the North Atlantic 

Ocean to perform numerical simulations. Poincare sections are constructed to identify 

chaos. It is found that oceanic internal waves are likely to induce chaos in a double- 

channel. 

A.       An investigation using 2-D model 

1.       2-D model 

The 2-D ray equations, consistent with the parabolic wave equation24, are used in 

this study to predict acoustic propagation. The equations are 

^ = — (16) 
dr     dP v   ' 

and 
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dP 

dr 

dH 

' dz 
(17) 

where 

H(z,P,r) = 05P2+V(z,r) (18) 

and 

V(z,r) = 0.5 
f C2\ 
l__b_ 

V     C(zf 
■g{?s) (19) 

Here, z is the depth, r is the range, P is the tangent of grazing angle, His the Hamiltonian, 

Fis the potential, C0 is the reference sound speed, C is the sound speed, and g is the 

perturbation in the potential function. 

The double-channel sound speed profile is given by the following model: 

C(z) = 

1.49323 - 0.0471063z + 0.147473z2 

- 0.145517z3 + 0.0452260z4,   when z < 15km 

1.49170+ 0.0133(z-15),   when z> 15km 

(20) 

which is obtained in the previous study9 by fitting the North Atlantic double-channel data 

in reference 25. The perturbation used here is the same as that of Palmer et al.2, and also 

the same as Yan's previous work9, i.e., 

g(z,r) = 4lA exp(-1.5z / £)sin(2;zr / R) (21) 
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where R is the perturbation wave length. This perturbation could be interpreted as a 

highly idealized internal wave or as a single baroclinic mode representing mesoscale 

structure. The exponential dependence on depth was derived from Brunt-Vaisala 

frequency; the sinusoidal formulation is similar to what Lee , and Baxter and Orr   used 

to investigate the effects of internal wave on sound in the ocean. This perturbation is not 

realistic. The advantage of using this simplified model is that Poincare section can be 

used to show chaos graphically. By using this sound speed model, a double-channel 

profile is depicted in Fig. 7. 

2.       Numerical calculations 

The ray equations (16) and (17) are integrated using the fourth-order Runge-Kutta 

method with adaptive step size control.19 The calculation accuracy is controlled by 

specifying a maximum fractional error (10-6) in any single integration step. Reflections 

are assumed at the ocean surface and bottom. After each step of integration, a check is 

made to see if the ray has penetrated the surface and bottom. If it has, then an iterative 

search is performed to determine the depth (with error less than 1 mm) and the angle of 

reflection. 

Poincare section is used to show chaos. It is depicted in such a way that the ray 

path is sampled every cycle of the range-dependent perturbation, i.e., 10 km when the 

perturbation wave length R in Eq. (21) is 10 km. 
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The parameters in Eq. (21) are 5=1.0, i?=5,10, and 15 km, respectively, which are 

typical in a fluctuating ocean [R=5 km corresponds to the horizontal wavelength of an 

internal wave (peak of spectrum)]. Two values are used for the parameter ,4 in Eq. (21). 

The first is ^4=0.0025 that corresponds approximately to 5m/s of sound speed 

perturbation, a typical value in the ocean , and the second is ^4=0.001 corresponding 

to 5C= 2.0 m/s in reference  . This ocean model, of cause, is not realistic. However, the 

numerical results produced as follows can provide qualitative information. 

3.       Results 

Fig. 8 through 13 are Poincare sections with perturbation strength ^4=0.0025. In 

these figures, the smooth closed curves are regular trajectories; and the apparently random 

distribution of points in some bounded region represent the chaos. We can see from these 

figures that chaos occurred in this case. From Yan's paper9, we know that this 

perturbation strength did not induce chaos in a deep ocean acoustic channel, but it did 

induce chaos in both Yan's paper and this work. This illustrates that ray chaos is more 

likely to occur in a double-channel than in a deep ocean channel. From Fig. 8, 9, and 10, 

we can also see that chaotic trajectories vary with the perturbation wave length R, but we 

still do not know how the parameter R affects chaoticity. The horizontal wave length of 

an internal wave ranges from 0.5 km to 50 km, and for the peak of spectrum is about 5 

km28. Here, we only used 5,10, and 15 km in the calculations, i.e., the values around the 

peak of spectrum. 
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Figs. 14 through 19 are the Poincare sections for perturbation strength .4=0.001. 

These figures also show that some of the ray trajectories exhibit chaotic behavior. 

However, in these figures, chaotic trajectories were significantly less than those in Figs. 

8 through 13. This is due to the decrease in the perturbation strength. It is difficult to 

specify a maximum perturbation strength for internal waves. It varies at the different 

region of the oceans, and varies significantly in published references. The values used 

here are taken from published references.29'30. To have a better understanding, we use 

measured sound speed data to make a further study. 

B.       Further study using 3-D model with measured sound speed 
data 

1.       Ray tracing 

We have just shown that chaos can be induced by internal waves in a double- 

channel. In that study, we used 2-D ray equations and a sound speed model. That study 

has two shortcomings. First, the ray equations are 2-D so that they may lose validity 

before chaos manifests. Second, the sound speed model may not well represent the real 

ocean environment. To overcome these shortcomings, we use the ray equations (1) 

through (5) and the measured sound speed data provided by the National Oceanic Data 

Center (NODC). 

In our original plan, a 3-D ray tracing was to be performed using the NODC data. 

However, we cannot complete this task because the NODC data we got cannot be used to 

construct a 3-D sound speed field. The most sound speed data sets we have obtained are 
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lack of the data corresponding to the depths between 400 to 2000 m, while these data are 

crucial to constructing a double-channel profile. Fortunately, we found some complete 

double-channel data at longitude 14°E, as are depicted in Fig. 20. We use these double- 

channel sound speed profiles (SSP) to perform ray tracing. For each SSP, Cubic Spline 

Method19 is used to estimate the sound speed at a given depth. Then the linear 

interpolation between the two adjacent SSPs gives the sound speed at a given latitude. 

We still use the 3-D ray equations (1) through (5). However, we use 

dC 
— = 0,    and       a(0) = 0 (22) 

to restrict a ray to stay at 14°E, because as mentioned above the double channel sound 

speed profiles we got are along this longitude direction. In this way, we use the 3-D ray 

equations and the 2-D sound speed field (Fig. 22) to perform ray tracing. Although 

horizontal refraction is neglected in this case, earth curvature is taken into account in the 

ray tracing by using the 3-D ray equations. In addition, we use the measured double- 

channel profiles. These approaches allow the following numerical results to be more 

realistic than those in the previous section. 

2.       Numerical results 

Figure 21 shows the ray paths in the double-channel. In these calculations, the 

source was placed at the upper channel axis with depth of 0.4 km. Table 9 lists the 
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largest Lyapunov exponents for these rays. We can see from this table that all of the rays 

have positive Lyapunov exponents, indicating chaos. We also constructed power spectra 

for these rays, as are shown in Fig. 22. These power spectra are obtained by using FFT to 

process the vertical path data sampled at 1 km step in range. We can see clearly that all 

of the power spectra are broadband, indicating chaos. This is consistent with the positive 

Lyapunov exponents listed in Table 9. 

Table 9 Lyapunov exponents for the acoustic rays in the double-channel 

Launch grazing angle (Deg.) Largest Lyapunov exponent 

_ 0.057 

1 0.076 

2 0.067 

3 0.015 

4 0.076 

5 0.011 

6 0.012 

7 0.027 

8 0.036 

9 0.035 

10 0.029 
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Recall that in the previous section we used 2-D ray equations and a weakly range- 

dependent double-channel model to study chaos. Our numerical results of those 

calculations suggested that only a few rays are chaotic, and that the number of chaotic 

rays depends on the perturbation strength assigned to the model. The numerical results 

(Table 9, and Fig. 22), however, provide a different point of view: all of the rays 

constructed using the measured sound speed data are chaotic. It appears that in a real 

ocean environment chaoticity (here, we mean the number of chaotic rays) is significantly 

larger than that we estimated using the ocean model. 

IV.     DISCUSSIONS: ON THE SIGNATURE OF CHAOS IN 
ACOUSTIC MEASURMENTS 

We have shown in Section II that the rays between Heard Island and Ascension 

Island are very chaotic. We are now interested in finding the signature of the chaos in the 

acoustic measurements made at Ascension Island during the Heard Island Feasibility 

Test. According to the published reference 17, the received signals at Ascension Island 

are characterized as "An unexpected combination of phase stability and amplitude 

variability." What is the signature of the chaos? 

Ray chaos means that the ray paths are extremely sensitive to launch angles (the 

launch azimuth and the launch grazing angle in the 3-D case). However, no matter how 

sensitive to the launch angles they are, some eigenray paths should exist between Heard 

Island and Ascension Island where the signals were received. In addition, these eigenray 
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In summary, chaos might enhance the amplitude variability of the received signals 

at Ascension Island. The discussions presented above appear to explain why the received 

signals at Ascension Island were characterized as "unexpected combination of phase 

stability and amplitude variability." For shallow water and a moving source however, 

chaos might have quite different signature. 
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V.      APPENDIX 1: DERIVATION OF RANGE EQUATION 

The derivation of the range equation is as follows. At the sea level, we have 

dR = ^j[jud<pj +[vcos0dA) (23) 

according to Geodesy18.  Using Eq. (23 ), we can write 
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dR      f   df\2   ( dX\2 

Ts=t»-dS) +rC0S^J 

= cos# Jl cosor 
V 

V 
 sum 
v-r 

(24) 

where use was made of Eqs. (1) and (2). Now we complete the derivation. We can see 

from this equation that when r=0=0 (i.e., a ray is restricted at the sea surface,) dR=ds. 

This means that the range equals to the path length in this particular case. 

VI.     APPENDIX 2: PARAMETERS OF HEARD-TO-ASCENSION 
RAYS 

Listed as follows are all the rays that satisfied the error tolerance: 0.000005° for 

the latitude at the receiver, and 0.005° for the longitude at the receiver. In all of our 

shooting processes, the error tolerance for the ending longitude is also set to 0.000005°, 

but none of the rays satisfied this error tolerance, due to chaos. Instead, we list those rays 

that are closest to eigenrays. In the following, LA represents launch grazing angle. Ray 

number in the first column means the number of shooting in searching for an eigenray. 

Table 10 Rays between Heard Island and Ascension Island 

LA=0 
Time, sec Range, km Longitude Depth Error L    Error D 

Ray 1 6258.395 9222.779 -14.42369 0.8735 0.0037      0.0415 
Ray 2 6258.037 9222.246 -14.4158 0.9369 0.0042      0.1049 

LA=0.25 
Time, sec Range, km Longitude Depth Error L    Error D 

Ray1 6257.977 9222.315 -14.4168 0.7847 0.0032 0.0473 
Ray 2 6258.009 9222.362 -14.4175 0.71613 0.0025 0.1159 
Ray 3 6257.943 9222.273 -14.4162 0.87732 0.0038 0.0453 
Ray 4 6258.237 9222.73 -14.423 0.88307 0.003 0.051 
Ray 5 6257.937 9222.288 -14.4164 0.91303 0.0036 0.081 
Ray 6 6257.933 9222.333 -14.41704 1.003 0.003 0.171 
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Ray 7   6258.134 9222.579  -14.4207 
Ray 8   6258.295  9222.81 -14.42416 

LA=0.5 

Ray 1 
Ray 2 
Ray 3 
Ray 4 

LA=0.75 

Ray 1 

Time, sec Range, km Longitude 
6257.977 9222.457  -14.4186 
6258.247 9222.778  -14.4233 
6258.132 9222.607  -14.4208 
6258.206 9222.845  -14.4243 

0.7939 
0.8364 

Depth 
0.7903 
0.8953 
0.8353 
0.8849 

0.0007 0.0381 
0.0042 0.0044 

Error L 
0.0014 
0.0033 
0.0008 
0.0043 

Error D 
0.042 

0.0633 
0.0033 
0.0329 

Time, sec Range, km Longitude      Depth       Error L    Error D 
6258.253       9222.9   -14.42496      0.7156        0.005        0.117 

LA=1.0 

Ray 1 

LA=1.25 

Ray 1 

LA=1.5 

Ray1 
Ray 2 

LA=1.75 

Ray 1 

Time, sec Range, km Longitude      Depth       Error L    Error D 
None 

Time, sec Range.km Longitude      Depth       Error L    Error D 
None 

Time, sec Range.km Longitude      Depth      Error L   Error D 
6258.049   9222.572   -14.42036    0.73701      0.0004        0.095 
6257.886   9222.454   -14.41854      0.9512      0.0015        0119 

Time, sec Range.km Longitude      Depth       Error L    Error D 
6258.167   9222.704   -14.42228    0.78168      0.0023 0.05 

LA=2.0 

Ray 1 
Time, sec 
6256.658 

Range.km 
9222.659 

Longitude 
-14.42382 

Depth 
0.9905 

Error L 
0.0038 

Error D 
0.158 

LA=2.25 

Ray 1 
Ray 2 
Ray 3 

Time, sec 
6258.186 

6258.103 
6258.133 

Range.km Longitude 
9222.722     -14.4228 
9222.659   -14.42199 
9222.745     -14.4232 

Depth 
0.76028 
0.63804 
0.74994 

Error L 
0.0028 
0.002 

0.0032 

Error D 
0.072 
0.194 
0.082 

LA=2.5 

Ray 1 
Ray 2 
Ray 3 
Ray 4 

Time, sec 
6258.229 
6258.112 
6258.207 
6258.134 

Range.km 
9222.732 
9222.578 
9222.655 
9222.548 

Longitude 
-14.42369 
-14.42142 
-14.42257 

-14.4209 

Depth 
0.87021 
0.97489 
0.95438 
0.91541 

Error L 
0.0037 
0.0014 
0.0026 
0.0009 

Error D 
0.068 
0.142 
0.122 
0.083 

LA=2.75 

Ray 1 
Time, sec 
None 

Range.km Longitude Depth Error L Error D 

LA=3 
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Time, sec Range.km Longitude Depth Error L Error D 
Ray 1 6257.617 9222.487 -14.41976 1.0447 0.0002 0.213 
Ray 2 6257.47 9222.271 -14.41661 0.68636 0.0034 0.146 
Ray 3 6257.422 9222.258 -14.41636 0.88974 0.0036 0.058 
Ray 4 6257.751 9222.751 -14.42381 0.95369 0.0038 0.121 

LA=3.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6257.677 9222.538 -14.4209 0.78817 0.0009 0.044 

LA=3.5 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6257.29 9222.512 -14.42021 0.7316 0.0002 0.1 

LA=3.75 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6257.188 9222.652 -14.42245 1.04295 0.0025 0.211 
Ray 2 6257.161 9222.576 -14.42111 0.77277 0.0011 0.0592 
Ray 3 6256.941 9222.322 -14.41738 1.01895 0.0026 0.187 
Ray 4 6256.944 9222.278 -14.41665 0.847133 0.0033 0.015 
Ray 5 6257.181 9222.633 -14.4219 0.78541 0.0019 0.0466 
Ray 6 6256.957 9222.297 -14.41696 1.0246 0.003 0.192 
Ray 7 6256.39 9222.235 -14.4159 1.0387 0.0041 0.206 

LA=4.0 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6256.422 9222.495 -14.4198 1.17785 0.0002 0.345 
Ray 2 6257.001 9222.795 -14.42438 0.79234 0.0044 0.0397 
Ray 3 6256.943 9222.635 -14.42194 0.909162 0.0019 0.077 
Ray 4 6257.036 9222.799 -14.42423 0.93649 0.0042 0.104 
Ray 5 6256.694 9222.661 -14.42233 1.121903 0.0023 0.289 
Ray 6 6257.053 9222.758 -14.42383 0.86011 0.0038 0.028 
Ray 7 6256.991 9222.77 -14.42402 0.998634 0.004 0.166 
Ray 8 6257.064 9222.833 -14.42487 0.85878 0.0049 0.026 
Ray 9 6256.634 9222.229 -14.41592 0.58457 0.0041 0.2474 

LA=4.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6256.681 9222.634 -14.42275 0.60981 0.0028 0.2222 
Ray 2 6256.689 9222.694 -14.42352 0.64245 0.0035 0.1895 
Ray 3 6256.326 9222.191 -14.41615 1.056633 0.0037 0.255 
Ray 4 6256.656 9222.596 -14.42209 1.02702 0.0021 0.195 
Ray 5 6256.644 9222.647 -14.42282 1.051741 0.0028 0.22 
Ray 6 6256.45 9222.293 -14.41775 0.737135 0.0022 0.095 

LA=4.5 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6256.187 9222.309 -14.41754 1.08604 0.0025 0.254 
Ray 2 6256.319 9222.363 -14.41834 0.70026 0.0017 0.132 
Ray 3 6256.442 9222.548 -14.42109 0.592678 0.0011 0.2393 
Ray 4 6256.297 9222.532 -14.42084 1.09902 0.0008 0.267 

LA=4.75 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6255.593 9222.382 -14.41888 0.61118 0.0011 0.221 
Ray 2 6255.393 9222.326 -14.41805 1.139497 0.0019 0.307 
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LA=5.0 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6254.874 9222.272 -14.41788 0.55961 0.0021 0.2724 
Ray 2 6254.285 9222.427 -14.42019 0.580166 0.0002 0.2518 
Ray 3 6254.951 9222.304 -14.41842 1.08 0.0016 0.248 

LA=5.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6254.642 9222.281 -14.418 1.104011 0.002 0.272 
Ray 2 6254.562 9222.159 -14.41618 1.07074 0.0038 0.238 
Ray 3 6254.913 9222.703 -14.42427 0.78058 0.0057 0.0515 
Ray 4 6254.773 9222.478 -14.42093 1.0377 0.0009 0.206 
Ray 5 6254.726 9222.408 -14.41988 1.06278 0.0001 0.231 
Ray 6 6254.837 9222.57 -14.4223 1.10143 0.0023 0.269 
Ray 7 6254.614 9222.243 -14.41744 1.107318 0.0026 0.275 
Ray 8 6254.345 9222.276 -14.41789 1.08102 0.0021 0.249 
Ray 9 6254.913 9222.705 -14.4243 0.7351 0.0043 0.097 

LA=5.5 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6254.196 9222.703 -14.42417 0.52629 0.0042 0.3057 
Ray 2 6253.877 9222.713 -14.42433 1.02665 0.0043 0.195 

LA=5.75 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6253.957 9222.536 -14.42137 0.5542 0.0014 0.2778 
Ray 2 6253.664 9222.097 -14.41487 0.52161 0.0051 0.3104 

LA=6 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6253.081 9222.339 -14.41889 0.80671 0.0011 0.0253 
Ray 2 6253.337 9222.68 -14.42396 1.1262 0.004 0.2942 
Ray 3 6253.519 9222.35 -14.41907 0.5876 0.0009 0.2444 
Ray 4 6253.042 9222.183 -14.41658 0.48903 0.0034 0.343 
Ray 5 6253.03 9222.226 -14.41723 1.21112 0.0028 0.379 
Ray 6 6253.275 9222.637 -14.42331 0.724091 0.0033 0.108 
Ray 7 6253.602 9222.521 -14.42162 1.149474 0.0016 0.318 

LA=6.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6252.964 9222.616 -14.42282 0.5053 0.0028 0.3267 
Ray 2 6252.887 9222.67 -14.42358 1.15308 0.0036 0.321 
Ray 3 6252.896 9222.542 -14.42167 0.8374 0.0017 0.005 
Ray 4 6252.709 9222.238 -14.41717 0.5074 0.0028 0.475 
Ray 5 6252.679 9222.192 -14.41648 0.5059 0.0035 0.3261 
Ray 6 6252.87 9222.581 -14.42224 0.6338 0.0022 0.1982 
Ray 7 6252.84 9222.542 -14.42167 0.5433 0.0017 0.2887 
Ray 8 6252.798 9222.546 -14.42174 1.21896 0.0017 0.387 
Ray 9 6252.867 9222.511 -14.42119 0.9311 0.0012 0.099 
Ray 10 6252.772 9222.507 -14.42116 1.24002 0.0012 0.408 
Ray 11 6252.775 9222.509 -14.42119 1.2023 0.0012 0.37 
Ray 12 6252.864 9222.511 -14.42122 1.002 0.0012 0.17 
Ray 13 6252.784 9222.523 -14.4214 1.19422 0.0014 0.362 
Ray 14 6252.734 9222.45 -14.42032 1.2588 0.0003 0.426 
Ray 15 6252.744 9222.469 -14.42059 1.2552 0.0006 0.423 
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Ray 16 6252.847 9222.6 -14.42254 0.97922 0.0025 0.147 
Ray 17 6252.914 9222.562 -14.42197 0.7599 0.002 0.072 
Ray 18 6252.643 9222.33 -14.41852 1.0008 0.0015 0.169 
Ray 19 6252.688 9222.207 -14.4167 0.48022 0.0033 0.352 
Ray 20 6252.881 9222.565 -14.42202 0.99737 0.002 0.165 

LA=6.5 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6252.548 9222.518 -14.4214 1.12819 0.0014 0.296 
Ray 2 6252.507 9222.262 -14.41753 0.8693 0.0025 0.037 
Ray 3 6252.413 9222.315 -14.41839 1.0823 0.0016 0.25 
Ray 4 6252.465 9222.385 -14.4194 1.0251 0.0006 0.193 
Ray 5 6252.394 9222.291 -14.41805 1.14342 0.002 0.311 
Ray 6 6252.749 9222.615 -14.42284 0.84029 0.0028 0.008 
Ray 7 6252.526 9222.415 -14.4199 0.71432 0.0001 0.118 
Ray 8 6252.388 9222.281 -14.41788 1.150145 0.0021 0.318 
Ray 9 6252.413 9222.279 -14.4179 0.71312 0.0021 0.119 
Ray 10 6252.886 9222.827 -14.42597 0.81557 0.006 0.016 
Ray 11 6252.388 9222.281 -14.4179 1.1398 0.0021 0.3078 
Ray 12 6252.737 9222.595 -14.42254 0.93785 0.0025 0.1059 
Ray 13 6252.785 9222.669 -14.42363 0.8986 0.0036 0.067 
Ray 14 6252.537 9222.498 -14.4211 1.13578 0.0011 0.304 
Ray 15 6252.628 9222.527 -14.42154 1.21604 0.0015 0.384 
Ray 16 6252.438 9222.21 -14.41683 0.76615 0.0032 0.0659 
Ray 17 6252.423 9222.331 -14.41863 1.147514 0.0014 0.3155 
Ray 18 6252.426 9222.168 -14.4162 0.4817 0.0038 0.35 
Ray 19 6252.444 9222.198 -14.41666 0.48346 0.0033 0.349 
Ray 20 6252.575 9222.556 -14.42196 1.13611 0.002 0.304 
Ray 21 6252.361 9222.239 -14.4173 1.1558 0.0027 0.324 
Ray 22 6252.328 9222.19 -14.41654 1.155 0.0035 0.323 
Ray 23 6252.823 9222.75 -14.42482 0.621658 0.0048 0.21 
Ray 24 6252.399 9222.255 -14.4175 0.69784 0.0025 0.135 
Ray 25 6252.476 9222.243 -14.41732 0.4991 0.0027 0.3329 

LA=6.75 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6251.375 9222.557 -14.42277 0.50002 0.0028 0.332 
Ray 2 6251.428 9222.64 -14.42401 0.54858 0.004 0.284 
Ray 3 6251.368 9222.69 -14.42473 0.7102 0.0047 0.122 
Ray 4 6251.411 9222.084 -14.4156 1.27591 0.0044 0.444 

LA=7.0 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6251.743 9222.486 -14.42115 0.50763 0.0012 0.324 
Ray 2 6251.832 9222.561 -14.42223 1.2396 0.0022 0.408 
Ray 3 6251.778 9222.489 -14.42117 1.08045 0.0012 0.248 
Ray 4 6250.889 9222.18 -14.41653 1.28603 0.0035 0.454 
Ray 5 6251.528 9222.16 -14.41628 0.61481 0.0037 0.218 
Ray 6 6251.651 9222.334 -14.41887 0.716851 0.0011 0.115 
Ray 7 6251.54 9222.167 -14.41639 0.7345 0.0036 0.097 

LA=7.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 None 

LA=7.5 
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Time, sec Range.km Longitude Depth Error L Error D 
Ray1 6249.89 9222.313 -14.41902 0.74816 0.001 0.084 
Ray 2 6249.765 9222.122 -14.4162 0.747638 0.0038 0.085 
Ray 3 6249.882 9222.68 -14.42448 1.32519 0.0045 0.493 

LA=7.75 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6248.067 9222.077 -14.4166 1.3533 0.0034 0.521 
Ray 2 6248.293 9222.409 -14.42157 1.375 0.0016 0.543 
Ray 3 6248.37 9222.529 -14.42337 1.39542 0.0034 0.563 
Ray 4 6248.164 9222.218 -14.41873 1.3583 0.0013 0.526 
Ray 5 6248.136 9222.18 -14.41816 1.342 0.0018 0.510 
Ray 6 6248.139 9222.179 -14.4182 1.3556 0.0018 0.523 
Ray 7 6248.085 9222.106 -14.41708 1.3685 0.0029 0.537 
Ray 8 6248.258 9222.363 -14.4209 1.3529 0.0009 0.521 
Ray 9 6248.174 9222.235 -14.419 1.3452 0.001 0.513 
Ray 10 6248.221 9222.306 -14.42 1.3432 0 0.511 
Ray 11 6248.439 9222.629 -14.4249 1.403 0.0049 0.571 
Ray 12 6248.463 9222.567 -14.42391 0.453485 0.0039 0.3786 
Ray 13 6248.426 9222.517 -14.42316 0.3485 0.0032 0.4835 
Ray 14 6248.084 9222.1 -14.41698 1.3683 0.003 0.5363 

LA =8 
Time, sec Range.km Longitude Depth Error L Error D 

None 

LA=8.25 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6246.175 9222.508 -14.42265 1.58583 0.0027 0.753 
Ray 2 6245.862 9222.127 -14.41697 0.70018 0.003 0.617 
Ray 3 6246.015 9222.266 -14.41904 1.622 0.001 0.790 
Ray 4 6246.244 9222.604 -14.4241 1.43566 0.0041 0.603 
Ray 5 6246.084 9222.369 -14.4206 1.55543 0.0006 0.723 
Ray 6 6246.024 9222.277 -14.41923 1.5777 0.0008 0.746 
Ray 7 6246.111 9222.412 -14.4212 1.5058 0.0012 0.674 
Ray 8 6246.041 9222.308 -14.4197 1.6314 0.0003 0.799 
Ray 9 6246.049 9222.317 -14.4198 1.57712 0.0002 0.745 
Ray 10 6246.174 9222.502 -14.4226 1.45562 0.0026 0.624 
Ray 11 6246.123 9222.426 -14.42143 1.51594 0.0014 0.683 
Ray 12 6246.11 9222.412 -14.4212 1.5961 0.0012 0.764 
Ray 13 6246.087 9222.373 -14.42063 1.53499 0.0006 0.703 
Ray 14 6246.185 9222.519 -14.42281 1.4707 0.0028 0.139 
Ray 15 6246.039 9222.414 -14.42125 0.4763 0.0013 0.356 
Ray 16 6246.142 9222.457 -14.4219 1.541 0.0019 0.709 
Ray 17 6246.047 9222.314 -14.4198 1.6017 0.0002 0.769 
Ray 18 6246.144 9222.458 -14.4219 1.45795 0.0019 0.626 
Ray 19 6246.042 9222.307 -14.4197 1.5738 0.0003 0.741 
Ray 20 6246.028 9222.288 -14.4194 1.6417 0.0006 0.809 
Ray 21 6245.885 9222.275 -14.41919 1.05125 0.0008 0.219 
Ray 22 6246.066 9222.349 -14.42028 1.6324 0.0003 0.8 
Ray 23 6246.113 9222.411 -14.42121 1.5148 0.0012 0.683 
Ray 24 6246.03 9222.287 -14.41938 1.5868 0.0006 0.755 
Ray 25 6246.072 9222.433 -14.4215 D.740505 0.0015 0.091 
Ray 26 6246.071 9222.349 -14.4203 1.5857 0.0003 0.753 
Ray 27 6246.146 9222.462 -14.422 1.4553 0.002 0.623 
Ray 28 6246.168 9222.496 -14.4225 1.5754 0.0025 0.743 
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Ray 29 6246.08 9222.364 -14.4205 1.4971 0.0005 0.665 
Ray 30 6246.068 9222.348 -14.42027 1.61637 0.0003 0.784 
Ray 31 6246.154 9222.473 -14.42214 1.46983 0.0021 0.638 
Ray 32 6246.173 9222.503 -14.4226 1.4536 0.0026 0.622 
Ray 33 6245.801 9222.18 -14.4178 1.322 0.0022 0.49 
Ray 34 6245.738 9222.084 -14.4164 1.3297 0.0036 0.498 

LA=8.5 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6244.726 9222.037 -14.41604 1.75247 0.004 0.920 
Ray 2 6244.834 9222.196 -14.4184 1.74041 0.0016 0.908 
Ray 3 6244.935 9222.349 -14.42069 1.7427 0.0007 0.911 
Ray 4 6244.722 9222.031 -14.41596 1.73772 0.004 0.906 
Ray 5 6244.828 9222.188 -14.4183 1.7366 0.0017 0.906 
Ray 6 6245.037 9222.497 -14.4229 1.7429 0.0029 0.911 
Ray 7 6244.82 9222.179 -14.41816 1.737 0.0018 0.905 
Ray 8 6244.763 9222.093 -14.41688 1.73196 0.0031 0.9 
Ray 9 6244.782 9222.118 -14.41726 1.7593 0.0027 0.928 
Ray 10 6244.926 9222.336 -14.4205 1.74 0.0005 0.908 
Ray 11 6245.005 9222.449 -14.42217 1.74205 0.0022 0.910 
Ray 12 6244.86 9222.235 -14.419 1.73653 0.001 0.905 
Ray 13 6244.763 9222.095 -14.4169 1.7399 0.0031 0.907 
Ray 14 6244.774 9222.107 -14.41709 1.7518 0.0029 0.920 
Ray 15 6244.794 9222.136 -14.41752 1.7382 0.0025 0.906 
Ray 16 6244.774 9222.106 -14.41708 1.7362 0.0029 0.904 
Ray 17 6244.947 9222.362 -14.4209 1.74075 0.0009 0.909 
Ray 18 6244.99 9222.431 -14.42191 1.7452 0.0019 0.913 
Ray 19 6244.981 9222.419 -14.42173 1.7433 0.0017 0.911 
Ray 20 6244.771 9222.102 -14.417 1.7339 0.003 0.902 
Ray 21 6244.804 9222.152 -14.4178 1.76324 0.0022 0.931 
Ray 22 6244.77 9222.102 -14.41701 1.7416 0.003 0.910 
Ray 23 6244.96 9222.384 -14.42121 1.7384 0.0012 0.906 
Ray 24 6244.697 9221.988 -14.41532 1.7467 0.0047 0.915 
Ray 25 6244.82 9222.175 -14.41811 1.7347 0.0019 0.903 
Ray 26 6244.812 9222.164 -14.41795 1.7312 0.002 0.899 
Ray 27 6244.877 9222.258 -14.41932 1.74013 0.0007 0.908 
Ray 28 6244.724 9222.032 -14.41598 1.7353 0.004 0.903 
Ray 29 6244.964 9222.389 -14.4213 1.74772 0.0013 0.916 
Ray 30 6244.724 9222.032 -14.41598 1.7353 0.004 0.903 

LA=8.75 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6244.073 9222.321 -14.42028 1.6431 0.0003 0.811 
Ray 2 6244.079 9222.326 -14.42036 1.6312 0.0004 0.799 
Ray 3 6244.072 9222.309 -14.4201 1.4702 0.0001 0.638 
Ray 4 6244.064 9222.302 -14.41999 1.667 0 0.835 

LA=9.0 
Time, sec Range, km I -ongitude Depth Error L Error D 

Ray 1 6244.828 9222.26 -14.41909 1.56 0.0009 0.728 
Ray 2 6244.977 9222.455 -14.42205 1.602 0.002 0.770 
Ray 3 6244.796 9222.191 -14.4181 1.56557 0.0019 0.734 
Ray 4 6244.972 9222.453 -14.42201 1.59571 0.002 0.764 
Ray 5 6244.899 9222.338 -14.4203 1.59307 0.0003 0.761 
Ray 6 6244.973 9222.466 -14.4222 1.2741 0.0022 0.442 
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LA=9.25 

Ray 1 
Time, sec Range, km Longitude      Depth       Error L    Error D 
none 

LA=9.5 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6241.44 9222.008 -14.41572 1.25978 0.0043 0.428 
Ray 2 6241.725 9222.445 -14.42222 1.43979 0.0022 0.608 
Ray 3 6241.823 9222.59 -14.42438 1.389362 0.0044 0.557 
Ray 4 6241.737 9222.46 -14.42243 1.3751 0.0024 0.543 
Ray 5 6241.667 9222.352 -14.4208 1.3754 0.0008 0.543 
Ray 6 6241.679 9222.377 -14.42119 1.4106 0.0012 0.579 
Ray 7 6241.801 9222.551 -14.42381 1.3441 0.0038 0.512 

LA=9.75 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6240.401 9222.261 -14.4199 0.7692 0.0001 0.063 
Ray 2 6240.45 9222.283 -14.42025 0.42419 0.0003 0.408 
Ray 3 6240.404 9222.283 -14.42026 0.8805 0.0003 0.048 
Ray 4 6240.377 9222.249 -14.41975 0.9078 0.0002 0.076 
Ray 5 6240.453 9222.292 -14.42037 0.3653 0.0004 0.467 
Ray 6 6240.442 9222.293 -14.4204 0.5638 0.0004 0.268 
Ray 7 6240.432 9222.278 -14.4202 0.5646 0.0002 0.268 
Ray 8 6240.42 9222.304 -14.4206 0.8649 0.0006 0.033 

LA=10 
Time, sec Range, km Longitude Depth Error L Error D 

Ray 1 6237.277 9222.271 -14.42022 1.7324 0.0002 0.900 
Ray 2 6237.295 9222.113 -14.4179 0.3 0.0021 0.532 
Ray 3 6237.255 9222.033 -14.4167 0.507 0.0033 0.325 
Ray 4 6237.266 9222.271 -14.42022 1.9642 0.0002 1.132 

LA=10.5 
Time, sec Range.km Longitude Depth Error L Error D 

Ray 1 6233.845 9221.917 -14.416 1.7913 0.004 0.959 
Ray 2 6233.964 9222.085 -14.4185 1.9243 0.0015 1.092 
Ray 3 6233.942 9222.048 -14.418 1.9368 0.002 1.105 
Ray 4 6234.008 9222.157 -14.41963 1.9401 0.0004 1.108 
Ray 5 6234.019 9222.173 -14.4199 1.9433 0.0001 1.111 
Ray 6 6234.07 9222.248 -14.42099 1.9365 0.001 1.105 
Ray 7 6233.836 9221.903 -14.4158 1.8368 0.0042 1.005 
Ray 8 6234.129 9222.334 -14.4223 1.943 0.0023 1.111" 
Ray 9 6233.841 9221.909 -14.41593 1.8249 0.0041 0.993 
Ray 10 6234.18 9222.409 -14.42338 1.98242 0.0034 1.150 
Ray 11 6233.997 9222.138 -14.4193 1.8938 0.0007 1.062 
Ray 12 6233.9 9221.994 -14.4172 1.8747 0.0028 1.043 
Ray 13 6234.193 9222.425 -14.42363 2.0105 0.0036 1.179 
Ray 14 6234.081 9222.261 -14.42118 1.96827 0.0012 1.136 
Ray 15 6234.218 9222.464 -14.4242 1.9966 0.0042 1,165 
Ray 16 6234.201 9222.439 -14.42384 1.9921 0.0038 1.16 
Ray 17 6234.105 9222.3 -14.42176 1.9741 0.0018 1.142 
Ray 18 6234.292 9222.571 -14.42578 2.0119 0.0058 1.180 
Ray 19 6234.053 9222.219 -14.4205 1.9425 0.0005 1.11 
Ray 20 6234.09 9222.272 -14.42135 1.9652 0.0014 1.133 
Ray 21 6234.063 9222.234 -14.42078 1.9165 0.0008 1.084 
Ray 22 6234.114 9222.307 -14.42186 1.9639 0.0019 1.132 
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Ray 23 6233.962 9222.085 -14.41856 1.9067 0.0014 1.075 
Ray 24 6233.853 9221.932 -14.41628 1.85032 0.0037 1.018 

LA=11 
Time, sec Range.km Longitude Depth Error L Error D 

Ray1 6233.935 9222.335 -14.4214 0.50716 0.0014 0.325 
Ray 2 6233.763 9222.304 -14.4209 2.12911 0.0009 1.297 
Ray 3 6234.186 9222.134 -14.4184 1.7626 0.0016 0.93 
Ray 4 6234.174 9222.126 -14.4183 1.8266 0.0017 0.995 
Ray 5 6233.623 9222.093 -14.4178 2.0576 0.0022 0.83 
Ray 6 6233.575 9222.021 -14.4167 1.9942 0.0033 1.162 
Ray 7 6234.252 9222.248 -14.4201 1.891 0.0001 1.059 

VII.   APPENDIX 3: LYAPUNOV EXPONENT DOES NOT 
QUANTIFY PREDICTABILITY 

The main conclusion of Lorenz's paper 31is that for some deterministic systems 

very long range forecasting is impossible. In his work, he also mentioned that "There 

remains the very important question as to how long is 'very long range'." To answer this 

question, Shaw   has computed an information parameter for Lorenz model. With this 

parameter, he made a prediction as to how long the information in a given initial 

condition will persist. His prediction was confirmed by an analog computer experiment. 

The information parameter he used is identical to Lyapunov exponent, as he mentioned in 

his paper. Therefore, Shaw's work implies that Lyapunov exponent quantifies the 

predictability of chaotic systems ~ a very important concept. 

This concept is accepted by many researchers,33,34,35,36 and has been used to define 

a predictability horizon in ocean acoustics. However, there is not enough evidence to 

support this concept. In the published references 33,34,35,and 36 those researchers who 

believe that Lyapunov exponent quantifies predictability did not give any example to 
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show it in their specific cases. In fact, the only evidence we have found is the result of 

the analog computer experiment presented by Shaw32. 

Therefore, the objective of this appendix is to numerically test the correctness of 

that concept. Considering that Lyapunov exponent is an asymptotic value at very long 

range, but loss of predictability usually occurs at a short range, we have a question: Can 

Lyapunov exponent quantify predictability? In the following, we use Wolf et al.'s 

method33 to compute Lyapunov exponents for Lorenz model. Then we use the Lyapunov 

exponents to make predictions as to how long the information in a given initial condition 

will persist. Finally, we conduct numerical experiments to test the correctness of this 

prediction. 

We use Wolf et al.'s published computer code33 to estimate Lyapunov exponents 

for the Lorenz model 

X = a(Y-X) 

Y=X(R-Z)-Y. (25) 

Z = XY-bZ 

We make a few revisions in this published FORTRAN program. First, we use 

FORTRAN'S double precision. Second, we use Press et al.'s subroutine RK4 instead of 

the DEVERK in the published code. Third, we change the model parameters to what 

Lorenz and Shaw used. 
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In the following calculations, the model parameters are <j= 10.0, R= 28.0, b = 8/3, 

the same as that Lorenz31 and Shaw32 used. The initial conditions are X(0) = 0.0, Y(0) = 

1.0, Z(0) = 0.0, according to Lorenz31. The step size is 0.001, the same as Shaw's, and 

1,000,000 steps of integration are performed for each calculation. Numerical experiments 

are performed with a digit personal computer (486DX2, 66 MHz). 

First we estimate Lyapunov exponents. With the method and parameters given in 

the previous paragraph, we get the largest Lyapunov exponent: Xi = 1.30 bits/sec. 

Then let us make a prediction using the Lyapunov exponent. We perform two 

calculations. In the first calculation, we use initial conditions (0, 1, 0), and in the second 

calculation, we use (0.0001,1, 0). The information value of X(0) we set in this way is 

approximately 13 bits (-log20.0001). Thus, the time after which the initial data is lost, 

according to Shaw32, is tp = 13 bits/1.30 bits per second = 10 sec. Therefore, the 

prediction made with the Lyapunov exponent is: the system may become unpredictable at 

about 10 seconds. In the Lorenz model, time is dimensionless. We use "second" here as 

the unit of time to be in consistent with that used by Shaw. 

Now, we depict the results of the two calculations in Fig. 23 to test the correctness 

of this prediction. In this figure, the solid line is the result of the first calculation, and the 
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dashed line represents the second calculation. If the prediction made with Lyapunov 

exponent is correct, the two lines should diverge from each other at about 10 seconds, as 

a result of losing 13 bits of initial data. However, the divergence did not occur until 

about 29 seconds. This suggests that the relative error of the prediction made with the 

Lyapunov exponent is (29-10)/29«66%. It is too large to be accepted. Obviously, 

Lyapunov exponent does not have predictive value and cannot be used to quantify 

predictability. 

Let us discuss why the Lyapunov exponent did not quantify the predictability in 

this case. Fig. 24 gives the largest Lyapunov exponent we estimated for this particular 

case. From this figure, we can see that at 29 seconds the value of the exponent is about 

0.49 bits per second (Point A in Fig. 24). This means that before the system became 

unpredictable the maximum rate of destroying information was actually 0.49 bits/sec. 

However, the asymptotic value 1.30 bits/sec - the Lyapunov exponent - was used to 

measure the predictability. This is why we could not make a correct prediction. 

The objective of this appendix is to investigate whether Lyapunov exponent has 

predictive value. This is done by performing numerical experiments with Lorenz model. 

Our numerical results show clearly that Lyapunov exponent does not quantify the 

predictability of a chaotic system. 
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paths should be stable, if the motion of the source ship can be ignored. When the 

acoustic signals were transmitted from the source ship, acoustic energy propagated to 

Ascension Island through these stable eigenray paths. Therefore, the received signals had 

phase stability. 

As long as the source illuminated the eigenray paths, the signals received at 

Ascension Island have phase stability. This could always happen, because a source can 

transmit energy through a wide range of angles so that the launch angles of the eigenray s, 

although need to be specified with very high accuracy due to chaos, can always be 

satisfied. However, the source should have a transmitting directivity - it transmits the 

acoustic energy at different intensity in different directions. Therefore, a very slight 

motion of the source can cause significant amplitude variation of the received signals. 

Since the source was deployed in a vertical array through a ship16, we can expect that 

during the transmissions the source moved slightly and stochastically due to the ocean 

wave. Therefore, the intensity of the energy transmitted through the eigenray paths might 

fluctuate stochastically during the transmissions. This in turn caused the amplitude 

variation of the received signals. This phenomenon might exhibit even if ray paths are 

not chaotic. However, chaos might enhance the amplitude variability. The reason is as 

follows. Chaotic ray paths are very sensitive to launch angles. Therefore, in the presence 

of chaos even a very small fluctuation in the axial direction of the source may cause large 

amplitude variation of received signals. 
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A main conclusion is: Lyapunov exponent is an asymptotic value at very long 

range, while initial data is lost at the early stage of the system's evolution. At the early 

stage, the actual rate at which a system destroys information may substantially differ from 

the value of the largest Lyapunov exponent. This is why Lyapunov exponent cannot be 

used to quantify predictability. 

Recently, there have been some publications emphasizing Lyapunov exponent's 

role in quantifying predictability and this situation may continue. Therefore, it is 

necessary to present an illustrative counterexample in this paper, showing that Lyapunov 

exponent does not quantify predictability. 
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Fig. 1 Extreme sensitive dependence on initial conditions 
Upper: the vertical ray path ofeigenray 1 with launch angles 

a(0)=266.7258936017752 °and 6(0)=0.5 ° 
Lower: the vertical ray path constructed using the same a(0) 

but 6(0) is perturbed by 0.000000005°. 
Such a small difference in 6(0) caused the ray path to change substantially. 
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Fig. 8   Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5 ° 6.0° 
7.5° and 9.0°, respectively. Source is at upper channel axis. 
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Fig. 9   Poincare section. From inner to outer, launch angles are 1.5° 3.0°, 4.5°, 6.0° 
7.5° and 9.0°, respectively. Source is at upper channel axis. 
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Fig. 10   Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5° 6.0°, 
7.5° and 9.0° respectively. Source is at upper channel axis. 

67 



A=0.0025, R=5,Zs=1.345 

-15 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Depth (km) 

Fig. 11    Poincare section. From inner to outer, launch angles are 1.5° 3.0°, 4.5° 6.0° 
7.5°, and 9.0°, respectively. Source is at lower channel axis. 

68 



A=0.0025, R=10 km, Zs=1.345 km 

O) 
0) 
Q 
o 
c 
< 

Fig. 12  Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5° 6.0°, 
7.5° and 9.0°, respectively. Source is at lower channel axis. 
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Fig. 13  Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5° 6.0° 
7.5° and 9.0°, respectively. Source is at lower channel axis. 
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A=0.001, R=5 km, Zs=0.231 km 
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Fig. 14  Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5° 6.0° 
7.5° and 9.0°, respectively. Source is at upper channel axis. 
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A=0.001, R=10 km, Zs=0.231 km 

O) 
a> 
Q 

o 

c 
< 

Fig. 15  Poincare section. From inner to outer, launch angles are 1.5°, 3.0° 4.5° 6.0° 
7.5°, and 9.0°, respectively. Source is at upper channel axis. 
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Fig. 16  Poincare section. From inner to outer, launch angles are 1.5 °, 3.0° 4.5° 6.0° 
7.5° and 9.0°, respectively. Source is at upper channel axis. 
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Fig. 17  Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5°, 6.0° 
7.5° and 9.0° respectively. Source is at lower channel axis. 
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Fig. 18  Poincare section. From inner to outer, launch angles are 1.5°, 3.0° 4.5° 6.0° 
7.5° and 9.0°, respectively. Source is at lower channel axis. 
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Fig. 19  Poincare section. From inner to outer, launch angles are 1.5° 3.0° 4.5° 6.0° 
7.5° and 9.0° respectively. Source is at lower channel axis. 
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Fig. 20  NODC double-channel profiles used in ray tracing 
(Longitude: 14 °E, Latitude: listed in the legends.) 
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Source depth: 0.4 km, Launch grazing angle=0 
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Fig. 21   Ray paths in the double-channel 
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Source depth: 0.4 km, Launch grazing angle: 3 Deg. 
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Fig. 21   Ray paths in the double-channel (continue) 
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Source depth: 0.4 km, launch grazing angle: 6 Deg. 
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Fig. 21   Ray paths in the double-channel (Continue) 
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Source depth: 0.4 km, launch grazing angle: 9 Deg. 
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Fig. 21   Ray paths in the double-channel (continue) 
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Zs= 0.4 km, Grazing angle= 0 Deg. 
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Fig. 22  Power spectra for the ten rays in figure 21 
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2s= 0.4 km, Grazing angle = 3 Deg. 
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Fig. 22  Power spectra for the eleven rays in figure 21 (continue) 
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Fig. 22  Power spectra for the eleven rays in figure 21 (continue) 
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Zs = 0.4 km, Launch angle = 9 Deg. 
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Fig. 22  Power spectra for the eleven rays in figure 21 (continue) 

85 



0     10    20    30    40    50    60    70    80    90   100 

Time 

0  10 20 30 40 50 60 70 80 90 100 

Time 

N 

JU - 

40- 
30- 
20- 
10- 
0- lllllllllllllllllllllllllllllll llllllll|llllllll[|lllllllll|lllllllll|lllllllll|lllllllll|lllllllll 

0  10 20 30 40 50 60 70 80 90 100 

Time 

Fig. 23     Time (dimensionless) evolution ofXin Lorenz model with parameters 
o=10.0, R=28.0, 

b=8/3. The solid line corresponds to the initial state of(0,1,0), 
and the dashed line corresponds to the initial state of (0.0001,1,0). 
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Fig. 24   Calculation of the largest Lyapunov exponent for Lorenz model 

with parameters: <j=10.0, R=28.0, b=8/3, and initial state of (0,1,0). 

Point A corresponds to the local value of the exponent at the time 

after which the future behavior of the system could not be predicted. 
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